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A study is presented of the band structure in one-dimensional photonic crystals with anisotropic and gyro-
tropic layers. It is predicted that magnetization of the structure in a direction normal to the plane of the layers
causes the formation of an additional band gap of a new type. The phenomenon is caused by the Bragg
resonance between harmonics of different polarization and stems from the hybridization of these harmonics.
Though the application of a magnetic field generally results in degeneracy lifting, in anisotropic magnetopho-
tonic crystals a magnetic field may actually induce polarization-degenerate Bragg reflections. Moreover, while
in a nonmagnetized photonic crystal, the Bloch waves of different polarization may have noncoincident band
edges, the band gaps predicted herewith are shared by the Bloch waves of any polarization. This allows the
design of polarization-independent optical tuning devices. Thus the formation of these band gaps enables the
magnetic control of arbitrarily polarized light.
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I. INTRODUCTION

Recent technological developments have enabled the fab-
rication of new types of artificial media. In this regard inho-
mogeneous structures deserve particular attention as their
specific properties can extend beyond those of natural mate-
rials. Photonic crystals constitute one such structure. They
are characterized by a periodic distribution of local constitu-
tive parameters. This periodicity causes the resonant Bragg
reflection of electromagnetic waves and the formation of op-
tical band gaps.1 The formation of optical band gaps is one
of the features that make photonic crystals widely useful.
The manipulation of these band gaps is of great technologi-
cal importance for optical waveguiding, photon trapping, and
optical filtering.

One of the ways to realize such manipulation at optical
frequencies is to utilize a magneto-optical material as photo-
nic crystal component.2–9 The embedding of magneto-optic
inclusions into the photonic crystal allows the control of its
spectral properties: one may shift the dispersion curve and
transmittance spectrum by application of a magnetic bias. As
a consequence, for certain polarizations some frequencies ly-
ing near the band edge move away from a passband condi-
tion and into the band gap. However, the mere embedding of
a magneto-optical material does not guarantee control of ar-
bitrarily polarized light. In particular, the dispersion curves
and, as a consequence, the band gaps of oppositely polarized
waves �right and left helicities�, for example, detune in op-
posite directions on the application of a magnetic field.

In the present communication we consider the case when
the application of a magnetic bias field not only shifts the
band gaps but also engenders the formation of a band gap of
a special type. This phenomenon happens for magnetization
normal to the layers in an anisotropic magnetophotonic crys-
tal. This type of band gap appears synchronously for all
Bloch wave polarizations, and so it may be useful for simul-
taneously controlling waves of different polarizations.

II. FORMATION OF STANDARD BAND GAPS
AT BRILLOUIN-ZONE BOUNDARIES

Below, without loss of generality, we consider waves trav-
eling normally to the layers. For the convenience of the
reader and for comparison with subsequent results presented
below, we reproduce in this section certain results presented
in Refs. 10 and 11 about band-gap formation.

According to the Floquet-Bloch theorem the eigensolution
to Maxwell’s equations in a system with periodic distribution
of constitutive parameters is a Bloch wave,

E� �r�� = f��r��eik�Blr�

= ��
n

f�neiG� nr��eik�Blr�

= �
n

f�nei�G� n+k�Bl�r�

= �
n

f�neik�Bl
�n�r�. �1�

The latter equality in Eq. �1� presents this eigensolution as an
infinite sum of plane waves with wave vectors differing from

each other by reciprocal-lattice vectors G� n. k�Bl is the Bloch
wave vector. Inside a photonic crystal all these plane waves

are not independent. The relation between their amplitudes f�n
is determined by mutual rescattering of the waves.

In the simplest case that of a one-dimensional photonic
crystal made up of isotropic materials, the electric field of the
wave traveling perpendicular to the layers, say along the z
axis �x and y axes chosen parallel to the layers as in Fig. 1�,
is governed by the following equation:

d2E�

dz2 + k0
2��z�E� = 0. �2�

Here k0= �1 /c�� is a reduced frequency or free space wave
number. By substituting Eq. �1� into Eq. �2� one may get an
infinite system of linear equations,
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�k�Bl + G� n�2f�n − k0
2�

n�

�n−n�f�n� = 0, �3�

where ��z�=�n�neiG� nz and G� n=nG� are the reciprocal-lattice
vectors.

We can recast Eq. �3� as

f�n =

k0
2 �

n��n

�n−n�f�n�

�k�Bl + nG� �2 − k0
2�0

.

Under the simultaneous fulfillment of conditions �k�Bl−G� �2

−k0
2�0�0 and kBl

2 −k0
2�0�0 the denominator for n=0 and n

=−1 simultaneously tends to zero. In this case, there are only

two dominant plane harmonics with amplitudes f�0 and f�−1
and wave vectors kBl

�0�=kBl and kBl
�−1�= �kBl−G��−kBl.

12 Thus,
to first order in perturbation theory �with respect to �1� one
can confine oneself to consideration of only these
harmonics10 and arrive at the following simple system of two
linear equations:13

�kBl
2 − k0

2�0�f�0 − k0
2�1f�−1 = 0,

��kBl − G�2 − k0
2�0�f�−1 − k0

2�1
�f�0 = 0. �4�

For the case of a homogeneous medium ��1=0� we get two
independent equations, the eigensolution of which yield the
wave numbers of independent plane waves with amplitudes

f�0 and f�−1. A nonzero �1 links both equations and relates f�0

and f�−1.
A nontrivial solution to Eq. �4� exists if and only if

det	kBl
2 − k0

2�0 − k0
2�1

− k0
2�−1 �kBl − G�2 − k0

2�0
	

= �kBl
2 − k0

2�0���kBl − G�2 − k0
2�0� − k0

4
�1
2 = 0. �5�

By substitution kBl−G /2→x this fourth-order equation may
be reduced to a biquadratic equation that can be easily
solved: x2=k0

2�0+G2 /4��k0
2�0G2+k0

4
�1
2 but only x2

=k0
2�0+G2 /4−�k0

2�0G2+k0
4
�1
2��k0

��0−G /2�2−
k0

2
�1
2

2��0G
may

simultaneously correspond to conditions �k�Bl−G� �2−k0
2�0�0

and kBl
2 −k0

2�0�0.

This solution predicts the existence of frequency bands
around k0

�0���0=G /2 where x2�0 and kBl is complex. Thus
this characteristic equation predicts the existence of a band
gap.

The band-gap bandwidth is10

�k0 =

�1
k0

�0�

n0
2 ,

where n0=��0 and k0
�0�= G

2n0
is the reduced frequency that

corresponds to the condition kBl−G=−kBl at �1=0 and is the
band-gap center frequency.

So, we see that a periodic perturbation of the diagonal
elements of the permittivity tensor induces a strong Bragg
resonance among the plane waves, activating even those that
cannot propagate in an unperturbed medium. At the bound-
ary of the Brillouin zone �2kBl=G� the Bloch wave mainly
consists of two harmonics, which in a previously homoge-
neous medium traveled freely in opposite directions as plane
waves. Since the amplitudes of these harmonics are identical
they transfer identical energy in opposite directions. Thus,
the Bragg resonance results in the absence of a general en-
ergy transfer throughout the system and hence in the forma-
tion of optical band gaps.

In a one-dimensional photonic crystal made up of isotro-
pic components, the waves of any polarization, which travel
in a normal direction to the layers acquire the same band
structure. There is polarization degeneracy. If one of the
components is a uniaxial crystal with anisotropy axis parallel
to the layers, the degeneracy is removed and the ordinary and
extraordinary Bloch waves induce different band gaps that
may partially intersect. The magnetization of a photonic
crystal made up of isotropic and magneto-optic materials re-
sults in a similar pattern: the Bloch waves of different polar-
ization have different band gaps slightly shifted in frequency.

In all these cases the band gaps are formed at the
Brillouin-zone boundary. From a mathematical point of view
this follows from the fact that after choosing a proper basis
�linearly polarized waves for the case of an anisotropic pho-
tonic crystal and right- and left-circularly polarized waves
for the case of magnetophotonic crystal� the systems are de-
scribed by Eq. �2� with a proper scalar periodic function ��z�.
This fact is a consequence of the conservation of symmetry
throughout the system.

III. BAND GAPS IN AN ANISOTROPIC
MAGNETOPHOTONIC CRYSTAL

Photonic crystals made up of anisotropic materials having
different anisotropy axes directions in different layers14–18 or
consisting of anisotropic and magneto-optic materials19–24

may exhibit band gaps of a new type. To understand the
formation of such band gaps let us consider a one-
dimensional photonic crystal made up of anisotropic
magneto-optic layers.20,21 In this case Eq. �3� looks as fol-

lows: �k�Bl+G� n�2f�n−k0
2�n��̂n−n�f�n�=0 but contrary to Eq. �3�

the tensor �̂n has also off-diagonal components. Thus,

FIG. 1. Structure under consideration: layered structure and nor-
mal incidence case.
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���z� = ��xx�z� − ig�z� 0

ig�z� �yy�z� 0

0 0 �zz�z�

 , �6�

where �aa�z�=� j�aa,je
ijGz, a=x, y, z, and g�z�=� jgje

ijGz.
This case differs from the case discussed in the previous
section only in the form of the unperturbed dielectric tensor
and can be realized by magnetizing a magneto-optic medium
in the z direction. In a Cartesian coordinate system �that is,
with basis vectors êx , êy� Maxwell’s equations reduce to

�
d2Ex

dz2 + k0
2�xx�z�Ex − ik0

2g�z�Ey = 0

d2Ey

dz2 + k0
2�yy�z�Ey + ik0

2g�z�Ex = 0.� �7�

In the unperturbed case we have propagation in a homoge-
neous anisotropic magneto-optic medium,

�
d2Ex

dz2 + k0
2�xx,0Ex − ik0

2g0Ey = 0

d2Ey

dz2 + k0
2�yy,0Ey + ik0

2g0Ex = 0.� �8�

Equation �8� has two independent eigensolutions traveling
forward in the positive z direction. These eigensolutions can
be described in terms of their wave vectors and polarizations.
We have right-elliptically polarized waves êx+ i�êy with
wave vector

� k1

k0
�2

= n1
2 = � + ��2 + g0

2, �9a�

and left-elliptically polarized waves i�êx+ êy with wave vec-
tor

� k2

k0
�2

= n2
2 = � − ��2 + g0

2, �9b�

where �=
�xx,0+�yy,0

2 , �=
�xx,0−�yy,0

2 , �=
��2+g0

2−�

g0
, and êx , êy are unit

vectors in the x and y directions, respectively.
The basis set êx , êy is not the most suitable for studying

Eq. �7� because even in the unperturbed case the system of

equations does not separate into two independent equations.
Usually one chooses a basis set of elliptically polarized
waves, where Er=Ex− i�Ey and El=Ey − i�Ex, in order to
simplify Eq. �8�. Considering Eq. �7� in this basis, we get

�
d2Er

dz2 + k1
2Er + k0

2Ar�z�Er + k0
2iB�z�El = 0

d2El

dz2 + k2
2El + k0

2Al�z�El − k0
2iB�z�Er = 0.� �10�

Here

Ar�z� =
��xx + 2�g� + �2��yy

1 + �2 ,

Al�z� =
��yy + 2�g� + �2��xx

1 + �2 ,

B�z� =
���xx − ��yy�� + �g��2 − 1�

1 + �2 ,

�� j j = � j j�z� − � j j,0,

and

�g = g�z� − g0,

with k1 and k2 as defined in Eq. �9�. Functions Ar ,Al ,B are
periodic with the periodicity of the lattice and can be consid-
ered as a perturbation of the system �the quantities are small
due to the smallness of �xx�z�−�xx,0, �yy�z�−�yy,0, and
g�z�−g0�.

The solution to Eq. �10� is a Bloch wave E� = �
Er

El
�

=� j�
Rj

Lj
�ei�kBl+jG�z. If we take into account the periodicity of

Ar ,Al ,B, we get

FIG. 2. The polynomial function D�z ,k0� at different frequen-
cies. The dashed line corresponds to an unperturbed case at some
frequency k0�k0

�0�, the solid line corresponds to an unperturbed
case at frequency k0

�0�, and the dotted line corresponds to a perturbed
case at frequency k0

�0�.

FIG. 3. �Color online� Dispersion curve in the reduced
Brillouin-zone scheme and corresponding transmission coefficient
T �right side of the graph�; the vertical axis is the same for both
sides of the graph. The straight dashed black line shows the real part
of kBl, while the curved line bridging the band gaps, displayed in
red online, shows the imaginary part of kBl. Within the band gaps
the real part of kBl is shown by a dotted line. Frequency k0 and
Bloch wave vector kBl are measured in d−1 units. To make the effect
more prominent we use photonic crystal parameters for two layers
of the same thickness d with �xx=2.0 and �yy =7.7 for the first layer
and �xx=1.5, �yy =4.5, and g=0.7 for the second. The total length of
the photonic crystal is 20 layers.
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Ar�z� = �
j

Ar,je
ijGz, Al�z� = �

j

Al,je
ijGz,

and

B�z� = �
j

Bje
ijGz,

where

Ar,j =
�xx,j + 2�gj + �2�yy,j

1 + �2 ,

Al,j =
�2�xx,j + 2�gj + �yy,j

1 + �2 ,

Bj =
��xx,j − �yy,j�� + gj��2 − 1�

1 + �2 ,

and

Ar,0 = Al,0 = B0 = 0.

While Al�z�, Ar�z�, and B�z� are real, then Ar,j =Ar,−j
� , Al,j

=Al,−j
� , and Bj =B−j

� .
Equation �10� reduces to

�− �kBl + jG�2Rj + k1
2Rj + k0

2�
j�

Ar,j−j�Rj� + k0
2i�

j�

Bj−j�Lj� = 0

− �kBl + jG�2Lj + k2
2Lj + k0

2�
j�

Al,j−j�Lj� − k0
2i�

j�

Bj−j�Rj� = 0.� �11�

We can recast Eq. �11� as

�Rj =

k0
2�

j�

Ar,j−j�Rj� + k0
2i�

j�

Bj−j�Lj�

�kBl + jG�2 − k1
2

Lj =

k0
2�

j�

Al,j−j�Lj� − k0
2i�

j�

Bj−j�Rj�

�kBl + jG�2 − k2
2 .

�
Under the simultaneous fulfillment of conditions �k�Bl−G� �2

−k1
2�0 and kBl

2 −k1
2�0 the denominator for j=−1 and j=0

simultaneously tends to zero for R−1 and R0. Analogously, for
L−1 and L0 under the simultaneous fulfillment of conditions
�k�Bl−G� �2−k2

2�0 and kBl
2 −k2

2�0. These cases are identical to
the one considered in the previous section.

However if k1�k2 one may find additional resonance
conditions �k�Bl−G� �2−k1

2�0 and kBl
2 −k2

2�0 �or kBl
2 −k1

2�0

and �k�Bl−G� �2−k2
2�0� which result in the simultaneous

growth of R−1 and L0 �correspondingly R0 and L−1�.
Thus to consider both types of resonance conditions we

restrict ourselves to consideration of four dominant harmon-
ics: R0, R−1, L0, and L−1. Neglecting other small harmonics
Eq. �11� turns into Eq. �12� below, which is, in general,
analogous to Eq. �4�

�
�k1

2 − kBl
2 �R0 + k0

2Ar,1R−1 + k0
2iB1L−1 = 0

�k1
2 − �kBl − G�2�R−1 + k0

2Ar,−1R0 + k0
2iB−1L0 = 0

�k2
2 − kBl

2 �L0 + k0
2Al,1L−1 − k0

2iB1R−1 = 0

�k2
2 − �kBl − G�2�L−1 + k0

2Al,−1L0 − k0
2iB−1R0 = 0.

�
�12�

Here there are two possible Bragg resonance cases. The first
case is a Bragg resonance when incident and reflected har-

monics are of the same polarization, namely, between R0 and
R−1 or between L0 and L−1. These Bragg resonances corre-
spond to the formation of band gaps at the boundary of the
Brillouin zones. In fact, the Bragg resonance between har-
monics R0 and R−1 occurs if k1

2−kBl
2 �0 and k1

2− �kBl−G�2

�0. In this case Eq. �12� becomes

��k1
2 − kBl

2 �R0 + k0
2Ar,1R−1 = 0

�k1
2 − �kBl − G�2�R−1 + k0

2Ar,−1R0 = 0,
�

which is identical to Eq. �4�.
The corresponding characteristic equation,

�kBl
2 − k1

2���kBl − G�2 − k1
2� − k0

4
Ar,1
2 = 0,

is biquadratic, and therefore it may be easily solved. Its so-
lution �in the same way as in the previous chapter� predicts
the frequencies at which the Bloch wave vector is a complex
quantity and thus predicts the formation of band gaps.

The band-gap bandwidth is

�k0 =

Ar,1
k0

�0�

n1
2 , �13�

where k0
�0�= G

2n1
with n1 as defined in Eq. �9�. Thus one may

conclude that the Bragg resonance between harmonics R0
and R−1 �or between L0 and L−1� results in band gaps at the
edges of the Brillouin zone as in the previous chapter. Below
we will refer to such band gaps as Brillouin BGs, where BG
stands for band gap. The second case of resonant Bragg re-
flection occurs when incident and reflected harmonics are
cross polarized, namely, R0 and L−1 and L0 and R−1. In this
case, the Bragg reflection results in the formation of band
gaps of new type. These band gaps form inside the Brillouin
zone under fulfillment of the Bragg conditions: k1

2−kBl
2 �0,
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k2
2− �kBl−G�2�0, k2

2−kBl
2 �0, and k1

2− �kBl−G�2�0, respec-
tively.

The Bragg reflection of cross polarized harmonics R0 and
L−1 is essential if k1

2−kBl
2 �0 and k2

2− �kBl−G�2�0. Confin-
ing ourselves to consideration of two of these harmonics we
arrive at the following system of equations:

��kBl
2 − k1

2�R0 − ik0
2B1L−1 = 0

��kBl − G�2 − k2
2�L−1 + ik0

2B−1R0 = 0.
� �14�

Here k1=n1k0 and k2=n2k0 are the wave vectors correspond-
ing to unperturbed �homogeneous anisotropic and gyrotro-
pic� media.

This system of equations is also similar to Eq. �4� with the
only difference that k1 and k2 are no longer equal to k0

��0
but possess different values. This difference plays a dramatic
role in the solution of the characteristic equation:25

det	k2
2 − �kBl − G�2 − ik0

2B1

ik0
2B−1 k1

2 − kBl
2 	

= �k2
2 − �kBl − G�2��k1

2 − kBl
2 � − k0

4
B1
2 = 0. �15�

Because k1�k2 this characteristic equation, unlike Eq. �5�,
cannot be reduced to a simple biquadratic equation with re-
spect to kBl thus demanding a more complicated analysis. To
make such an analysis we pay attention to the properties of
the polynomial function D�z ,k0�= �n2

2k0
2− �z−G�2��n1

2k0
2−z2�

−k0
4
B1
2 for different frequencies. The roots of D�z ,k0�=0

determine the dispersion relation.
In the unperturbed case �B1=0� for arbitrary frequency k0,

Eq. �15� has four solutions: kBl1,3= �k1= �n1k0 and kBl2,4
=G�k2=G�n2k0 which correspond to intersections of the
graph of D�z ,k0� with the abscissa axis �see Fig. 2 dashed
line�. But we have to take into account the solutions that
satisfy conditions k1

2−kBl
2 �0 and k2

2− �kBl−G�2�0 under
which Eq. �15� is derived. The simultaneous fulfillment of
these conditions happens at a particular frequency k0

�0�

= G
n1+n2

and for two Bloch vectors kBl1 ,kBl2 only. At this par-
ticular frequency kBl1=kBl2. Thus, the polynomial function
D�kBl� at the frequency k0

�0� has double roots �see Fig. 2 solid
line�. Adding any small negative term −k0

4
B1
2 even if infini-
tesimally small �see Fig. 2 dotted line� results in shifting
down the whole graph and, as a consequence, in the elimi-
nation of the crossing of D�z ,k0� with the horizontal axis.
This means that the roots acquire complex values. We can
conclude that an anisotropic perturbation in the gyrotropic
medium causes the formation of the new band gap.

Returning now to the other condition for a Bragg reso-
nance, between of R−1 and L0, one obtains the following
equation:

���kBl − G�2 − k1
2�R−1 − ik0

2B−1L0 = 0

�kBl
2 − k2

2�L0 + ik0
2B1R−1 = 0.

�
And its respective characteristic equation

det	k1
2 − �kBl − G�2 − ik0

2B1

ik0
2B1 k2

2 − kBl
2 	

= �k1
2 − �kBl − G�2��k2

2 − kBl
2 � − k0

4
B1
2 = 0, �16�

which is similar to Eq. �15�. The only difference is the ex-
change of the indices 1 and 2 in ki. Thus, at the same fre-
quency k0

�0�= G
n1+n2

a new band gap forms. One may find that
by the substitution kBl→G−kBl this equation turns into Eq.
�15�. Therefore since the solution of Eq. �15� has a nonzero
imaginary part then the solution of Eq. �16� also has a non-
zero imaginary part and these two equations predict the same
band gaps. Particularly these equations predict the same
band-gap bandwidth.

In general the solution of Eq. �15� is quite complicated
but in the special case where 
B1
� 
n1−n2
 it is possible to
find the following approximate band-gap bandwidth:

�k0 =

B1
k0

�0�

n1n2
, �17�

where k0
�0�= G

n1+n2
with n1 and n2 as defined in Eq. �9�.

A comparison of Eqs. �13� and �17� shows that while the
first type of Bragg resonance is caused by terms Ai, the sec-
ond type of Bragg resonance is caused by the term Bi. Now
one may see the convenience of using the formulation pre-
sented in Eq. �12�—we have separated the different types of
resonance. Different resonances are determined by the differ-
ent terms. Particularly for B=0,

��xx�z� − ��yy�z�
��xx,0 − ��yy,0

=
�g�z�

g0
.

This condition means that if ��xx�z�−�yy�z�� /g�z�=const
�Ref. 21� then B=0 and there is no band gap of a new type.

It should be pointed out that these new band gaps �defined
in terms of B� possess an unusual property, namely, polariza-
tion degeneracy. Indeed Bragg resonances between right-
polarized harmonics R0 and R−1 become essential at fre-
quency k0

�0�= G
2n1

, while Bragg resonances between left-
polarized harmonics L0 and L−1 become essential at
frequency k0

�0�= G
2n2

. In general, when n1�n2, these frequen-
cies are different and their band-gap bandwidths are also
different. At the same time Bragg resonances between R0 and
L−1 and between L0 and R−1 always occur simultaneously at
the same frequency k0

�0�= G
n1+n2

. Moreover their band-gap
bandwidths are also the same.

We may conclude that perturbation theory predicts the
formation of band gaps of the same width around the same
frequency k0

�0�= G
n1+n2

for each polarization. So this band gap
appears simultaneously for both polarization states, or in
other words this formation is degenerate with respect to po-
larization and we will refer to such band gaps as degenerate
BGs.

IV. PROPERTIES OF DEGENERATE BAND GAPS

We have seen that perturbation theory predicts the forma-
tion of degenerate band gaps around frequency k0

�0�. These
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band gaps arise under the fulfillment of general Bragg con-
ditions between harmonics of different polarization k0

�0�n1
+k0

�0�n2=G. To study the properties of degenerate band gaps
we have calculated the exact band structure for the previ-
ously considered one-dimensional photonic crystals. To cal-
culate the dispersion curves and band structure for such mag-
netophotonic crystals we now employ the transfer-matrix
method.15,20,26,27

At optical frequencies for present-day materials the band-
width of the gyrotropic degenerate band gap is small due to
the smallness of the off-diagonal element g in the dielectric
tensor. For example, for a photonic crystal with bilayer unit
cell consisting of bismuth-substituted yttrium iron garnet
�typical dielectric tensor components �xx=5.6, �yy =5.6, and
g=0.018�, with layer thickness d, and CaCO3 ��xx=2.2,�yy
=2.8�, with layer thickness 2d, the gyrotropic degenerate
band-gap bandwidth at saturation magnetization is only
�k0=0.8	10−4d−1 around frequency k0=1.140d−1 with the
imaginary part of the Bloch wavevector equal to Im�kBl�
=0.2	10−3d−1 at the center of the band gap. In spite of the
smallness of �k0, this band gap is degenerate with respect to
polarization �just as predicted by perturbation theory�.

It is possible, however, to significantly enhance the net
Faraday rotation delivered by the photonic crystal through
the use of photon-trapping structures.4,6,28 These structures
yield a larger effective gyrotropy parameter g thus increasing
the bandwidth of the gyrotropic degenerate band gap.29 To
simplify our considerations we will not concern ourselves
with these structures and will focus our attention on the fun-
damental properties of the degenerate band gap.

Below, in order to highlight the properties of the gyrotro-
pic degenerate band gap and for ease of comparison with
those of the Brillouin band gap, the anisotropy contrast and
gyrotropy parameters have been chosen artificially large.
Figure 3 plots the dispersion curve for a photonic crystal
with unit-cell structure consisting of two layers with param-
eters �xx=2.0 and �yy =7.7 for the first layer and �xx=1.5,
�yy =4.5, and g=0.7 for the second. Both layers have the
same thickness and the total length of the photonic crystal is
20 layers.

First of all let us consider the character of the dispersion
curves in a reduced Brillouin-zone scheme �Fig. 3�. In Fig. 3
one can observe besides the Brillouin band gaps at the edges
of the Brillouin zone �referred to as Brillouin BG� the pres-
ence of band gaps around frequency k0

�0� �corresponding to
the fulfillment of conditions k1

2−kBl
2 �0 and k2

2− �kBl−G�2

�0�. These band gaps coincide exactly in frequency and
wave-vector coordinates for both Bloch wave polarization
states, in accordance with the predictions of perturbation
theory on the formation of degenerate band gaps with respect
to polarization.

The degenerate band gap in Fig. 3 forms inside the Bril-
louin zone, contrary to the Brillouin BG which forms at the
boundary of the Brillouin zone. To clarify this point one may
consider dispersion curves �see Fig. 4� for the same photonic
crystal structure whose dispersion was depicted in Fig. 3 but
with the gyrotropy turned off, namely, g=0 �respectively,
term Bi=0 and there are no degenerate band gaps�. This con-
dition can be achieved by switching off the magnetic field in
the absence of hysteresis. In that case the frequency k0

�0� cor-

responds to the frequency of effective isotropy,19 namely, the
intersection point of dispersion curves. Thus, in the presence
of gyrotropy a degenerate band gap forms inside the Bril-
louin zone around a frequency of effective isotropy.

If we return to Fig. 3 one can find that for each frequency
k0 there are four Bloch wave-vector solutions inside the first
Brillouin zone. Within the degenerate BG these wave vectors
take the special form a�k0�� ib�k0� and −a�k0�� ib�k0�,
where a�k0� and b�k0� are real positive quantities. In particu-
lar two of these Bloch wave vectors, kBl=a+ ib and kBl=−a
+ ib correspond to two different evanescent Bloch waves,
while Bloch wave vectors kBl=a− ib and kBl=−a− ib corre-
spond to evanescent Bloch waves in the opposite z-axis
direction.

As was pointed out above, the main peculiarity of such
band gaps �and their difference with Brillouin band gaps� is
the polarization degeneracy at Bragg reflection. Points A and
B in Fig. 3 show the edges of the degenerate BG �b�k0�
=0�. For each frequency coordinate at the band edges the
corresponding Bloch waves have exactly the same Bloch
wave vectors. This can be pictured by approaching the band
edges from the passband side. For frequencies just below
point A, or just above point B, there are two Bloch mode
solutions with different Bloch wave vectors for each given
frequency k0. When the extremal points A and B are reached,
these two solutions, corresponding to different Bloch waves
with different polarization states, become degenerate in
Bloch wave vector. At each frequency inside the band gap
the real part of the wave vector a�k0� �shown as a black
dashed bridge between points A and B �Ref. 30�� is the same
for both polarizations. However, the imaginary parts of these
wave vectors �b�k0� are different �Fig. 3 curved lines bridg-
ing the band gaps, shown in red online�.31

Also it should be pointed out that bridge AB is not a
vertical line. For frequencies inside the Brillouin BG the real
part of the Bloch wave vector �vertical dashed line in Fig. 3�
equals G /2 and is independent of the frequency, whereas for
the degenerate BG the real part of the Bloch wave vector
�dashed bridge AB� is a function of frequency.

FIG. 4. �Color online� Dispersion curve in the reduced
Brillouin-zone scheme and corresponding transmission coefficient
T �right side of the graph� for a photonic crystal structure with unit
cell consisting of two layers of the same thickness d with �xx=2.0
and �yy =7.7 for the first layer and �xx=1.5, �yy =4.5, and g=0 for
the second. The total length of the photonic crystal is 20 layers. The
figure shows that in the absence of gyrotropy, a condition that may
be induced by switching off a magnetizing field on a suitably pre-
pared magneto-optic medium, the degenerate band gap is sup-
pressed, while the Brillouin band gap persists. Notice that the dis-
persion curves for different Bloch waves intersect at k0

�0�.

MERZLIKIN et al. PHYSICAL REVIEW B 79, 195103 �2009�

195103-6



Another important feature of the degenerate band gap is
its response to arbitrarily polarized light. Since the Brillouin
BG for one polarization corresponds to a passing band for
another, the transmittance for unpolarized light cannot be
significantly less than 0.5 as shown in the transmittance plot
of Fig. 3. On the other hand, the gyrotropic degenerate BG
reflects back all polarizations simultaneously. Hence its light-
blocking efficiency depends only on the reflectivity of the
grating and can be made arbitrarily large by making the pho-
tonic crystal sufficiently long. Figure 3 shows the transmit-
tance for unpolarized light for both band gaps.

To study the direction of propagation or evanescing of the
Bloch waves it is useful to consider the dispersion curves in
an enhanced Brillouin-zone scheme �Fig. 5�, which also
helps us to separate the dispersion curves according to polar-
ization. In an enhanced Brillouin-zone scheme the Bloch
wave vectors inside the degenerate band gap take the form
��a�k0�+ ib�k0�� and ��G−a�k0�+ ib�k0��. In such represen-
tation the wave vectors with positive value of the real part
corresponds to evanescent waves.

It is easy to see that the degenerate BG results in curve
discontinuities just inside the Brillouin zone. Furthermore
since the bridge is positioned angularly then for one of the
polarization states there is an interval in real wave vectors
�bridge A�B�� with no allowed frequencies. At the same time
for another polarization state there is a continuous interval of
real wave vectors �bridge AB� with two frequencies corre-
sponding to each wave vector. These properties are unusual
for band gaps and cannot be realized for Brillouin band gaps.

V. CONCLUSION

We observe that the magnetization of a one-dimensional
photonic crystal made up of isotropic dielectric and/or iso-
tropic magneto-optical materials results only in a shift of the
dispersion curves for right- and left-circularly polarized
waves in opposite directions. In other words one cannot at-
tain a situation where at some frequency the dispersion
curves for both right- and left-circularly polarized waves will
shift from a passband into the band gap simultaneously.
Thus, in a one-dimensional magnetophotonic crystal based
on isotropic magneto-optical materials one cannot manipu-
late arbitrarily polarized light �or simultaneously both polar-
izations� by the use of an external magnetic field. This re-
mark shows that the absence of polarization degeneracy
restricts the range of applications of magnetophotonic crys-
tals as tunable devices.

In the present paper we have shown that the combination
of the following three properties: anisotropy, gyrotropy, and
periodicity—can result in the formation of gyrotropic degen-
erate band gaps. These band gaps appear inside the Brillouin
zone as a result of the Bragg resonance between local normal
modes having different polarization states.

We have shown that the term degenerate �referred to the
band gap� reveals itself in different properties: �1� the Bloch
waves at the edges of the band gap are degenerate with re-
spect to polarization, �2� inside the degenerate band gap the
real part of the Bloch wave vector is the same for both so-
lutions, and �3� the degenerate band gap appears simulta-
neously for both polarizations. At the same time, all these
three properties are closely connected to each other and only
occur in conjunction with each other.

Thereupon the degenerate band gap is of great interest.
Indeed, on the one hand the degenerate band gap always
appears simultaneously for both polarizations. On the other
hand one may control its appearance in magnetophotonic
crystals by the use of an external magnetic field �since its
bandwidth is proportional to magnetization, see Eq. �17� and
Refs. 19–24�.
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